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Abstract

The formation of images of Gaussian beams at cer-
tain distances along a circular metallic waveguide or
optical fiber is studied. The phenomenon of Fourier
imaging in which an essentially exact replica of the
input beam is produced, occurs here as it does for slab
waveguides. The Fresnel images produced in the circu-
lar guides, however, are not replicas, but are related
to a certain transform of the original beam shape.

Introduction

It has been known for some time that a field dis-
tribution launched into certain multimode waveguides
can reproduce itself with great accuracy at certain
distances (kno n as Fourier image distances) from the
input plane.l- ! This property can be used in the
design of devices such as couplers, switches and so
forth. At certain other distances from the input
plane, the parallel-plate or dielectric slab waveguide
can also form Fresnel images--multiple and perhaps
inverted repli~the original field pattern
reduced in amplitude and regularly spaced across the
width of the guide.2j4 These, too, have some potentidl
for practical use, as in a signal splitter.

It is also knownthat circular metallic waveguides
and step-index circular optical fibers can produce
Fourier images. Nothing, however, seems to be known
about the possible existence of Fresnel-type images on
these structures. In this paper, we will outline a
first attempt to study this problem.

Field Description by Modes

Consider a step-index circular fiber of radius a
as shown in Fig. 1. The core refractive index is no,
the cladding index is nl.

‘odes ‘f ‘his ‘ib5r ‘hichare not too close to cutoff can be described using the
fields and propagation constants of the TM modes of a
hollow metallic circular waveguide of slightly larger
radius

b = a + k~l(l - n~/n~)-% (1)

where ko= noo~ is the wavenumber in the core

region, and a time dependence of exp(iwt) is assumed.
The propagation constants for the two guides are iden-
tical in this approximation, and the function E(P,z)
which describes the longitudinal electric field of the
equivalent hollow guide will also describe either of
the transverse components of the electric field of the
circular fiber. The following therefore applies
equally to either type of waveguide.

Suppose that an azimuthally symmetric field dis-
tribution Eo(p) = E(P,O) is present at the inpUt Plane

Z=o. Then only @-independent modes are produced in
the waveguide, and by well-known methods,~ we can
express the field at any point z > 0 along the guide as:

J

b
E(p,z) = p’Eo~’)K(p,p’ ;z)dp’ (2)

where o

of Colorado
co 80309

m Jo(.jom })Jo(jom~)
j2 ,b2;-i(k~- Om

K(o,p’;z) =-j ~ e
m= 1 J~(jom) (3)

Here Jn are Bessel functions and jom is the #root

of the Bessel function Jo.

Paraxial Approximation and Imaging

Assuming the waveguide to support a large number
of modes above cutoff, most of these modes have propa-
gation constants which will be well approximated by the
paraxial approximation:

(k~-j~m/b2)%~ ko-j~m/2kob2 (4)

If we further invoke the asymptotic relation
j Om-(m-%)m, then at any multiple of the Fourier imaging
distance

’11 =
8kob2/n (5)

we will have reproduced the original field pattern,
with some phase shift only:

-iko,z,,+in/4
=e K(P,P’;O)

(6)

Even with the approximations we have made, the fidelity
of these Fourier images to the original pattern is
excellent.

To test the possibility of Fresnel images, let us
inquire about the field distribution at z=zll/2.

Making the paraxial approximation and letting jom be

used interchangeably with its asymptotic form as before,
we have

-iko~l+in/8 z @Jo(jomf+)Jo(Jom~) ~-,lm
K(p,p’;z,,/2)=e ~ m~,

J~(jom)

(7)

Now, if P is not too close to zero, it is valid to
replace JO(jnmp/b) by its asymptotic form. By suitable

manipulati~n,-we can find that the asymptotic form of

(-1 )mJo(jom p/b) is the same as that of a certain other

combination of Bessel function terms whose coefficients
are independent of m:

(-l)mJo(jom~) =-(%?

{

Jo[jom(l -~)l+J1[jom(l -~)1
1

(8)

Hence, (7) can be split into two parts

() % -ikozll-7mi/8
[K(b-P;p’;O)

K(P,P’;Z11/2)= ~ e

+ Kl(b-p, p’)] (9)
where
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- J,(jom~)Jo(jom~)
K1(P>P’) ‘; I

b m=l Jf(jom)
(lo)

From (2) and (9), we see that E(P, Zll/2) resolves

into a portion resembling the input field E. (though

“inverted” with respect to the center of the guide) and
a certain transform of this input field. In fact, if
EO(P) is given by

m

EO(P) ‘m~l EmJo(jom &). (11)

in accordance with equations (.2) -(3), then we can
define a transform of this field by

E,(P) = jbo’Eo(o’ )K, (p,P’)dP’

= ~~1 EmJ1(jom&)
(12)

Here Em are some constants depending on the detailed
nature of the input field Eo. If we can somehow com-
pute E,(P) given EO(P), then we=an write

-ikoz11=7ri/8
[Eo(b-p)E(P,Z11/2)& (.~)%e

+ El(b)] (13)

This will be the “Fresnel image” formed at Z=Z11/2.

When the input beam is Gaussian,

- p2/ 2W:
Eo(p) = e (14)

then El(p) can be given explicitly. For, since

2

J

b

‘m= 22 pEo(p)Jo(jom #)do (15)
bJl(Jom) o

then we can define an auxiliarv function

such that

f(p)=b y~
m=l ‘om

ET(P) =-f’(p),

bEm _ z

I

b

jom - b2J~(jom) o

From (15), then, we have

J
b

~ pEo(p) Jo(jom&)dp=
‘om o

Jo(jom f) (16)

and we can also say that

of(o) Jo(jom~)dp (17)

I

b

pf[p)Jo(jom ~)dp (18)

o

Equation (18) is simply a statement of the equality
of two Hankel transforms. If both EO(P) and f(P) are

essentially zero for P z b, then we can take inverse
Hankel transforms of both sides of (18), to get

E,(P) = -f’(p) em
~ Jdp o ~o(U) JO(U )du (19)

where
io(u) =

J
- pEo(p)Jo(up)dP
o

(20)

Using these relationships, we can evaluate E,(P) for
the Gaussian input field (14), and 9et

[ 0[l.($)-$(+)](21)

-P2/4w2

El(p)’+ ~e

o
0 0

where 10 and 11 are modified 8essel functions of

the first kind.

In Fig. 2, we show a comparison of the prediction
of eqn. (13) with that of the exact mode series. While
the general shape is quite accurate, the curves differ
by a constant factor over most of the range of P , and
the approximate field actually blows up as p+ O. The
reason for this can be seen by returning to our central
approximation (8). This is a nonuniform approximation;
it blows up at P = O (as we have seen), and is not
likely to be very accurate for P near b since it is
based on asymptotic relations valid for j Om(l -p/b)

large. 8ut for an input field originally concentrated
near P = O, our analysis has predicted that the impor-
tant parts of the Fresnel image at z=zll/2 are those

near p = b, so eqn. (8) is an inadequate approximation
for this purpose.

From an examination of Fig. 2, we speculate that
the introduction of a constant factor into (8) and (13)
may improve matters everywhere except very near P= O.
Indeed, thisl turns out to be the case if we choose the
factor (2/m)ti, making (8) now

(-l)mJo (join&~-(&~{ Jo[jom(l -~)] +J1[jom(l -~)]
/

(22)

Though (22) eventually breaks down for large enough m,
for p near b it remains valid for a number of terms.
At p/b = 0.9, for example, the left and right sides of
(22) are as follows:

m=l: - .14 vs. -.21
M=z: - .19 vs. -.22

m=5: - .22 vs. -.20

So long as the input field excites a reasonably large
number of modes significantly (so that large errors in
one of the modes as with m=l above do not jeopardize
the overall accuracy of the approximation), but not so
many that a large number of modes do not satisfy (22)
well, we may use (22) to obtain a modified version of
(13):.,

()b-p%e”ol “
E(P,Zll/2)E ~

-,kz ,-7nl/8[Eo(b-p)+ E1(b-p)l

.,
(23)

In Figs. 3-5, we compare the results of (23) with
those of the exact mode series for several different
beam widths. Except near P = O where (23) is still non-
uniform, we see that (23) provides a very good approxi-
mation indeed. The fact that this waveguide takes a
field concentrated near the center of the guide at z=O
and transforms it into a “ring” near the outer boundary
at z =zlT/2 may make this Fresnel image useful in some

types of beam transformation devices.

Conclusion

We have attempted to extend this method to other
possible Fresnel image planes, such as zll/4, zll/3,and

so on, This has met with only very limited success, due
to the increased number of values of p where the approx-
imations become nonuniform, as they do at p =0 and p =b
in eqn. (8). What seems to be needed is a uniform
approximation which, though more complicated, would
enable us to accurately predict the form of an image at
any Fresnel image plane.

123



Acknowledgments

The authors are grateful to Prof. D.C. Chang for a
great many discussions on this work. This research was
partially supported by the Army Research Office (ARO)
under grant no. DAAG29-G-0173.

1.

2.

3.

4.

5.

6.

7.

References—

L.A. Rivlin and V.S. Shultiyaev, “Multimode wave-
guides for coherent light,” Radiophys. Quantum
Electron. vol. 11, pp. 318-321 (1968).

R. Ulrich, “Image formation by phase coincidences
in optical waveguides,” Opt. Commun. vol. 13, pp.
259-264 (1975).

E.E. GrigoFeva and A.T. Semenov, “Waveguide image
transmission in coherent light (review),” SOV.J.
Quantum Electron. vol. 8, pp. 1063-1073 (l-

D.C. Chanq and E.F. Kuester. “A hvbrid method for
paraxial ~eam propagation in multi~ode optical
waveguides,” IEEE Trans. Micr. Theory Tech. VO1.29,
pp. g23-g33 (1981).

E.F. Kuester, “Propagation constants for linearly-
Dolarized modes of arbitrarily-sha~ed oDtical
fibers or dielectric waveguid&,” Optic: Letters
VO]. 8, pp. 192-194 (1983).

L.B. Felsen and N. Marcuvitz, Radiation and
Scattering of Waves. Englewood Cliffs, NJ: Prentice-
Hall, 1973, pp. 254-265.

1.S. Gradshteyn and I.M. Ryzhik, Table of Integrals,
Series and Products. New York: Academic Press,1980.

Fig. 1

0.:

—

xi\
N—

<

~ o.

(

0
0

0
/- \

c!)
// \

b
\

1/ a
\

I
\ no

/’ -’~
/ /’

\ -g’
\ -—— /

Step-index fiber and equivalent hollow
metallic guide.

l-\
II

PI

I

I

/
i /
\

///
=--- ---

—
I I I I

0.2 0.4 0.6 0.8 1.0
p/b

Fig. 2: Exact (—) and approximate (---; eqn. (13))
Fresnel image at 2=211/2; a=wo/b = 0.1.
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Fig. 3: Exact (—) and approximate (---; eqn. (23))
Fresnel image at z=z,l/2; a = we/b = 0.2.
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Fig. 4: Same as Fig. 3, but we/b = O.
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Fig. 5: Same as Fig. 3 but we/b = 0.067.
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